
IS COTS THE BEST SOLUTION FOR THE SOFTWARE CRISIS

IN THE DoD

November 22, 1999

Introduction: In the beginning of software development, we used machine language of ones

and zeroes to run our computer programs. We then moved on to procedural languages, which

took care of the hands on approach used to design a program. We now have a higher level of

abstraction with (COTS) commercial-off-the-shelf software.

The DoD, to try to save money and keep current on the technical advances in the private

sector have issued a mandate to challenge system developers to incorporate COTS components

into systems without losing any reliability and accessibility of DoD applications. In a letter from

the Defense Science Board Task Force which concluded “That DoD’s investment in software

requires greater DoD-wide management control and oversight in the coming years if the

department is to exploit the use of commercial software acquisition practices fully, as well as

rapid advances in software technology”.1

If you look at COTS it seems like a straightforward solution to the software crisis. We in

the software industry are always looking for the next best thing in software development and the

easiest way to create a software application. But, we need to fully identify the advantages and

disadvantages associated with the use of COTS software. There also is a need to have a

thorough evaluation of the COTS software package to analyze if these meet the requirements of

given software project and overall system performance and is this the most cost effective in the

long run for purchase by the DoD.

Advantages: With government budgets getting smaller in size every fiscal year, the emphasis

has turned to using COTS products. COTS resources are a wide variety from Microsoft Office

Desktop products that are functional with other components. To very complex software

1 Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially

applications that can be customized to adapt to many different types of architectures.

The main reason the government mandated the use of COTS was to lower maintenance

costs. Cost is a very big factor in the classical “make versus buy” question. During a

reengineering project, the savings factor can be a tremendous boost to the acquisition of a COTS

software product. With COTS-based software a system will be upgraded with new version

releases anytime the vendor implements changes. This will keep the technical aspect up to date

with the most cutting edge products.

The big push right now is towards COTS products, which takes place in the context of

COTS-based systems. The benefits of purchasing a stand-alone Oracle database management

system (DBMS) outweigh the cost of creating a functional equivalent from scratch. The

government with these commercial systems ultimately wishes that with lower maintenance

requirements they would be able to produce significantly lower costs.

 By introducing COTS another factor is that systems could have “plug and play”

capabilities. “Plug and play” is a big motivation to acquiring COTS software. To which you can

have a software environment in which heterogeneous components can be added or changed but

also interconnected or interoperated without causing a ripple effect to other related components.

This idea was originally used to a very high degree in the hardware venue. The idea was you

could change monitors, keyboards etc. from one vendor’s product to another without having to

load a lot of different types of drivers and change the configuration file.

With client-server systems having the most impact on today’s computer system design,

and it being still in the early stages of development. COTS products furnish needed supporting

technical functionality to change collections of different computing platforms into united,

distributed computing environments. The COTS software products, which are available, offer

varying ranges of standards conformity, heterogeneous computing platform support,

interoperability, security functionality, performance proficiency, and distributed environment

transparency for applications using their services.

Disadvantages: The vendor plays a significant role in whether to purchase a particular COTS

product or not. You can become too dependent on a particular vendor’s product. You may find

some features attractive, but to achieve this will cost more and could make you hostage to a

single vendors set of products sometimes called “vendor lock”. 2

You have to investigate if the vendor has a reputable history of providing support at

critical times, or if you can get 24-hour seven days a week support for the particular COTS

software product you decide to purchase. Will this component be part of the operating system

for years to come? Then you hope that the company that produces the software that you choose

to integrate will not go out of business, leaving you as a customer with nonfunctional tools and

unretrievable data. Even if the vendor is around for years, they often phase out support for the

product over a specified time period usually agreed upon during contractual negotiations. You

as a customer might have different needs than an ordinary company.

Another point is do they supply well-written, easily understandable documentation for

software maintenance? Most of the time the installation documentation is insufficient in

providing a good roadmap for the system administrator. There is usually a lot of integration

between different interfaces that never gets documented properly leaving you in the dark and

guessing if the right parameters are being used turning a system integration into a huge guessing

game.

2 The Commandments of COTS: Still in Search of the Promised Land

When the government purchases a COTS product they are under the illusion of getting

cheaper and easier system maintenance. We have to look at the different aspects of how an

upgrade can affect a system with a number of Off-the-shelf components. Upgrading a system

that has COTS-based software means that as new releases for COTS components are issued by

the diverse number of vendors that the system will incorporate all the changes for better or

worse. Although a system administrator can choose to skip over certain releases the vendor will

tend to support only a limited number of versions. If you elect to skip versions your program

will not survive in the long run. But you should keep your systems commercial components as

current as possible to save a configuration management headache.

 A system with numerous commercial components is very dependent on the various

releases of the supporting COTS vendors. The system will require costly licenses to be renewed

periodically due to the different components being upgraded at widely varying intervals. A

component upgrade, which can result in many unforeseen problems, such as incompatible files

and databases, altered naming conventions, and COTS components having new conflicts

amongst themselves. The effects of these numerous dependencies of COTS components and

different COTS vendors can vary from small amounts of user inconvenience to all out system

instability.

In the advantages it was suggested that it would be cheaper to be able to just plug in a

software component and have no repercussions. But in the current state of the software world it

is quite different than the hardware world and COTS components are rarely built to plug into an

existing system without any side effects. The standard ways to overcome these deficiencies are

to use “wrappers”, “bridges”, or other “glueware”. The meanings of these terms are third-party

software that accomplishes whatever integrating functions needed: taking output from one

component and reformatting it for input to another, sending notification messages about one

tool’s completion to another for start-up and so forth. The maintenance cost is actually not lower

to write the wrappers, which could be a very complex task. Then you have to the knowledge at

both the detailed system level and in the COTS components being wrapped. When a new

version is released the wrapper or glueware will have the potential of needing to be upgraded.

This could be a maintenance nightmare in keeping the glueware up-to-date for any integrated

system due to the random vendor release cycles.

The COTS system will still have a critical need to be engineered. You will still have to

pay for a system engineer to maintain the software. It will still have its own requirements in the

lifecycle process. It will have to have a good design, be coded and integrated, tested independent

or otherwise, and managed the same as any other system that has been purchased or engineered

in the past.

You cannot decide as just an individual to switch to COTS based systems, it is a very

large undertaking which, needs a whole paradigm shift by the entire organization. This is a

significant shift from building from scratch to the next of integration of ready-made components.

This shift to the new mindset should take place all the way from upper level management

through the software developers, software quality assurance, configuration management, and

software testing. The managers need to modify their expectations of the techniques used by all

these positions because they are going to change with the use of COTS products.

 The experience level is very little right now in the government with building and

acquiring systems mainly COTS-based over the whole entire lifecycle. The vendors are just

giving us promises and wishful thinking instead of hard facts or verified cost models with which

to base our excitement for each of their products. We hope to compare the COTS products to

say like the automobile industry, which uses a per-unit component cost consideration. But can

we truly put a cost per-unit on software components where each one is different unto itself.

There are other hidden costs, which need to be analyzed including:

• “Market research to find COTS products that are suitable.”

• “Product analyses to select among alternatives.”

• “Licenses and warranties especially if the warranty available to the general public

does not suit you’re needs.”3

For each situation the costs that come up consistently to the front depends on each individual

circumstance and system, the specific Risk-mitigation plans and the skills of the current

management.

Conclusions: We in the software industry are still looking for that magic “Silver bullet”, that one

thing that will do the next impossible task. I think that the government might be grasping at the

COTS products bandwagon as the next one.

The software crisis does tend to exist at different times in the government depending on

the out of control software costs and growing system complexities or whichever new conceptual

idea someone is trying to push to the top brass. But I believe with proper training and the use of

contractor’s influx of new and cutting edge concepts we could in the future use the COTS

software products to our overall advantage.

Hopefully by doing a very thorough analysis of each product will lead to cutting costs,

gaining knowledge and getting cutting edge products used throughout the United States Air

Force.

3 The Commandments of COTS: Still in Search of the Promised Land

Sources:

A Software Development Process for COTS-Based Information System Infrastructure

Part II: Lessons Learned

The Commandments of COTS: Still in Search of the Promised Land

Simplex Architecture: Meeting the Challenges of Using COTS in High-Reliability

Systems

The Opportunities and Complexities of Applying Commercial-Off-the-Shelf Components

A Software Development Process for COTS-Based Information System Infrastructure:

Part 1

Report of the Defense Science Board Task Force on Acquiring Defense Software

Commercially (Office of the Under Secretary of Defense for Acquisition & Technology)

No Silver Bullet Essence and Accidents of Software Engineering

